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ABSTRACT rameter values, based on specific measurements for that
parameter reported in the literature. However, even forThe adjustment of the parameters in mechanistic crop models to
measurable parameters, one is often confronted with afield data, using an automatic procedure, is essential to ensure efficient

and objective use of measured data. However, it is in general numeri- range of possible values, due to measurement error or
cally impossible, and in any case undoubtedly unwise, to adjust all due to real differences for different circumstances.
the model parameters to the measured data. There is currently no The accumulation of errors in the different parame-
widely accepted solution to this problem. This paper proposes a new ters, in addition to possible errors in the model equa-
approach to parameter adjustment, and applies it to a model of corn tions, can lead to model results that are quite far from
growth and development. One begins by defining a criterion of model measured field data. A solution to this problem is to
goodness-of-fit, which should be adapted to the goal of the modeling

calibrate the model, that is to estimate some or all ofexercise, and a corresponding criterion of model prediction error. For
the model parameters from field data to improve thethe latter we propose a cross validation version of the goodness-of-fit
fit between model and data. Parameter estimation forcriterion. In Step 1 of the algorithm, one orders the parameters ac-
these models is not, however, a straightforward regres-cording to how much each improves the goodness-of-fit of the model.

In the second step, the number of parameters actually adjusted is sion problem. First of all, the data structure is often
chosen to minimize the prediction error criterion. This approach has quite complicated. The field data may consist of mea-
the advantage of explicitly using prediction quality as a criterion. As surements of several different variables such as yield,
a by-product, it leads to adjusting relatively few parameters (in our biomass, leaf area index (LAI), etc. with possible corre-
example, 3 out of the 26 potentially adjustable parameters), which lation between data for the same site or the same year.
considerably reduces the numerical problems. The procedure is quite Secondly, it is in general numerically impossible to esti-
straightforward to apply, although it does require substantial comput-

mate all the parameters, and the numerical problemsing time.
arise partly because of more fundamental problems,
such as high correlation between parameter estimates.
Thirdly, one would like to make use of the information

Mechanistic crop models have become increasingly from the literature, but it is not clear how to do thisimportant in recent years as teaching and re- with a regression approach.search tools, and as proposed tools for crop manage- There has been relatively little work on parameterment. Such models contain, in general, a fairly large estimation for crop models. A common approach is trialnumber of parameters (several 10s or even 100 or more), and error. Various parameter values are tested, until awhere a parameter is identified by the fact that it takes set of values is found that gives an acceptable fit to thethe same fixed value for all site-years or possibly by data. It clearly would be a great advantage to havegroup of site-years. instead an automatic procedure for parameter adjust-There is often some initial information about the pa- ment. This would be simpler to implement than trial
and error and would probably give better results. It
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For example, one common method of estimating predic- estimate will depend, among other things, on the amount
of data. Thus, Refsgaard (1997) stresses the importancetion error is by cross validation, and this requires a

reproducible procedure for parameter estimation. Also, of keeping the ratio between the number of adjusted
parameters and the amount of independent field datamodel comparison is complicated if the models not only

have different equations, but also have different proce- at a reasonably low level.
A second problem is the choice of the criterion todures for parameter estimation. For example, Batchelor

et al. (1994) were able to objectively compare different optimize in fitting the calculated model to measured
data. The criterion can be based on statistical consider-models for pod detachment in peanut (Arachis hypo-

gaea L.) because they used the same data, in the same ations. One approach is generalized least squares, which
leads to using the variance–covariance matrix to weightway, to adjust the parameters for each model. Finally,

it would allow one to explore in detail the relation be- the different residuals in the expression that is to be
minimized. In cases where there are true replicates,tween the data and the parameter values, and to con-

sider such questions as the relative efficiency of different these may be used to estimate the variance–covariance
matrix (Vold et al., 1999). In other cases, various simpli-experimental designs for parameter estimation, as for

example in Yapo et al. (1996). The purpose of this paper fying assumptions can be made. For example, Sievänen
and Burk (1993) assumed their data (tree diameter, treeis to propose an automatic procedure for adjusting the

parameter values of crop models to field data. height, number of trees, and height of crown) were
independent but with different variances for each dataThe problems faced here are essentially the same

as for other complex dynamic models. The following type, and they estimated those variances. Gribb (1996)
weighted each different data type by the inverse of thediscussion on parameter estimation found in the litera-

ture therefore draws heavily on work in other fields, and mean values, which can be thought of as an approxima-
tion to weighting by the inverse of the variance. Sumnerin particular on work concerning hydrological models.

A first problem to consider is which parameters are et al. (1997) used a first-order autoregressive model to
model the covariance between measurements over time.to be adjusted to field data. In simple cases, such as a

model to predict flowering date (Grimm et al., 1993), If one assumes that the model errors have a normal
distribution, then a possible statistical criterion is theit may be possible to estimate all the model parameters

(five in this case). In general, however, this is not possi- likelihood, which is to be maximized. In practice, this
leads to minimizing the determinant of the variance–ble. One approach is to decide a priori on a small number

of parameters to adjust. For example, Sievänen and covariance matrix (for example, Yan and Han, 1991).
It is not clear, however, that statistical arguments areBurk (1993) decided not to adjust parameters whose

values could be measured directly and so were consid- the most pertinent for choosing the criterion to optimize.
The statistical approach relies on hypotheses about theered well-known. A different approach is to do a sensi-

tivity analysis of the model, and to adjust the most sensi- distributions of the residuals that may be difficult to jus-
tify for complex situations. Furthermore, the modelingtive parameters (Yan and Han, 1991; Gribb, 1996; Xevi

et al., 1997; Van der Perk, 1998). Sumner et al. (1997) effort may have some specific goal (for example, predic-
tion of yield) that is not reflected in the optimal proper-started with a set of three parameters to estimate, then

added further parameters one at a time if they reduced ties that result from a rigorous statistical treatment (for
example, minimum variance of the parameter estima-residual variance. Hanson et al. (1999) defined the prob-

lem differently. They required that the model fit the tors). This implies that statistical considerations should
be used to suggest, rather than to impose, a criterion.data to within a fixed margin, and they adjusted as many

parameters as necessary to do so. Thus, Gupta et al. (1998) argued that in general there
is no compelling statistical reason to choose a particularOften, the argument for reducing the number of pa-

rameters to estimate is based on numerical consider- criterion. Rather, one is in general interested in various
different aspects of the fit of the model to the data, andations. The estimation algorithms simply are incapable

of finding a global optimum if there are too many param- each aspect may lead to different parameter values.
They seek, then, not a single optimum set of parametereters. A more fundamental reason for limiting the num-

ber of estimated parameters is that estimating too many values, but rather sets of parameter values, where each
set is optimal for some aspect of the data. Yan and Hanparameters can decrease model predictive quality. This

can occur because estimating a parameter from field (1991) also noted that there is not a single definition of
best model, it depends on the purpose of the model anddata has two antagonistic effects on model predictive

quality. On the one hand, it will tend to improve predic- the user’s judgement. They considered four different
outputs of their precipitation–runoff model, and showedtions. The amount of improvement will depend on how

far the literature value is from the optimal value, and that estimating parameters using one output may give
quite poor results for a different output. They finallyon the sensitivity of the model predictions to the param-

eter. On the other hand, estimating a parameter intro- fit their model to a criterion that combines the different
outputs. Yapo et al. (1996) found that different adjust-duces errors, related to the fact that the parameters

are estimated from a finite amount of data, which are ment procedures (in their case, daily root mean square
error or heteroscedastic maximum likelihood) gave dif-themselves not perfect. In general, the overall result is

that it is worthwhile to estimate some, but not all, of ferent results, the first giving a better match for flood
peaks and the second a better match to the entire rangethe model parameters (Wallach and Génard, 1998; Wal-

lach et al., 1990). The optimal number of parameters to of flow events.
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Table 1. State variables in the model.

Name Description Initialization Units

TTd thermal time from emergence to day d 0.0 at emergence 8C day
LAId leaf area index on day d Equal to parameter lai0 at emergence unitless
FSENd fraction of senescent leaves on day d 0.0 at emergence unitless
Bd aboveground biomass on day d Equal to the product of parameters lai0 and gpm2 at emergence t/ha
Rd root depth on day d Equal to parameter inidep at emergence cm
Hd harvest index on day d 0.0 at emergence unitless
S(i,d) soil water in soil layer i (i5{1,2,3,4}) on day d Fraction of maximum available soil water† is fixed at 0.8 on Jan. mm

1 for all layers

† Fraction maximum available soil water is the ratio of available soil water to maximum available soil water (see Eq. [26]).

A third problem is that of a numerical algorithm for quality of the resulting model, which is now specifically
chosen for predictive quality. It also is convenient com-searching the parameter space for values that minimize

the chosen criterion. Algorithms that have been tested putationally, since it limits the number of parameters
to be adjusted simultaneously. We note that proceduresinclude a modified Levenberg-Marquardt method (Ols-

thoorn, 1995), the shuffle complex evolution method, including cross-validation for estimating prediction er-
ror have been proposed in the statistical literature forthe multiple start simplex and the local simplex (Gan

and Biftu, 1996; Yapo et al., 1996), a simulated annealing the problem of choosing how many parameters to adjust
(for example, Stone and Brooks, 1990).algorithm (Sumner et al., 1997), and variants of a genetic

algorithm (Franchini and Galeati, 1997). To illustrate how the proposed algorithm is applied
and to demonstrate that it is applicable to crop simula-Hanson et al. (1999) adopted what might be called a

cascade approach. First they adjusted some parameters tion models, we apply it to a new corn (Zea mays L.)
model. This particular application is of practical interest,to soil water balance, then other parameters to soil nutri-

ent data, and finally a last set of parameters to plant because this model is part of a project aimed at simulat-
ing irrigation strategies for corn.production data. In this way, the number of parameters

adjusted in each step is small. Van der Perk (1998) and
Zhang and Lindström (1997) also use this approach. MATERIALS AND METHODS

We thus see that a number of different approaches
Modelto parameter estimation are possible. A fourth problem,

then, is what criterion to use for choosing between dif- The model used is fairly similar to the one described in
Muchow et al. (1990) and Muchow and Sinclair (1991). Theferent adjustment approaches. One possibility is simply
model calculates crop growth and development and soil waterto use the procedure that gives the best fit of the model
on a daily basis. Biomass accumulation is based on the generalto the data, as measured for example by the coefficient
interception/conversion concept (Monteith, 1972, 1977), andof correlation (Grimm et al., 1993; Van der Perk, 1998).
grain yield is calculated as final aboveground biomass timesA problem here is that one is usually interested in reduc-
a harvest index (Sinclair et al., 1990; Muchow et al., 1990;ing prediction error, which is not the same as adjustment Muchow and Sinclair, 1991). The effect of water on growth

error. In particular, adjusting additional parameters will is taken into account. Nitrogen is assumed not to be a limiting
always reduce adjustment error but may increase predic- factor, and is not included in the model. The state variables
tion error. Prediction error can be estimated by splitting of the model are listed in Table 1, the input variables are
the data in some way, using part for adjustment and given in Table 2, and the adjustable parameters in Table 3.

The initial values for the parameters (Table 3) are based onpart for evaluation. For example, Vinten and Redman
information from the literature or expert opinion, but not on(1990) estimated parameter values based on daily soil
the data set used for adjustment. The model equations arewater and total drainage, while evaluation was based
given in the appendix.on daily leaching. Gan and Biftu (1996) adjusted param-

eters to part of the time series of data from a catchment,
Dataand then evaluate the model using a different time pe-

riod. Refsgaard (1997) also used this type of data split- A large data set related specifically to the effect of irrigation
on corn in southwestern France was collected for the purposeting, but in addition tested the model for other locations.

Batchelor et al. (1994) used cross validation to estimate Table 2. Input variables in the model.
mean squared error of prediction (MSEP), smaller val-

Name Description Unitsues of MSEP being better. A different criterion of qual-
TMINd minimum air temperature day d 8City is the acceptability of the estimated parameter values.
TMAXd maximum air temperature day d 8CIt is usually demanded that they be reasonable, based
RADd solar irradiance day d MJ/m2

on what is known elsewhere. Sievänen and Burk (1993) ETPd potential evapotranspiration day d mm
RAINd rainfall day d mmadopt this criterion.
SOILD soil depth cmThe purpose of this paper is to propose and illustrate uFC(x ) volumetric soil water at field capacity as a mm/mm

the use of a new algorithm for parameter adjustment function of depth
uWP(x ) volumetric soil water at wilting point as a mm/mmfor crop models. The approach here borrows a number

function of depthof ideas as described above. The basic difference is that DENS planting density plants/m2

VARIETY Varietyan estimate of prediction error is used to decide how
IRRIGd irrigation amount, day d mmmany parameters to adjust. This is important for the
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Table 3. Adjustable parameters in the model.

Name Units Initial value Explanation

gpm2 g/m2 25.0 specific leaf weight
himax – 0.55 maximum harvest index
inidep cm 10.0 initial root depth at emergence
lai0 – 0.0016 leaf area index at emergence
maxdep cm 130.0 maximum root depth
p1evap – 0.075 effect of available water in layer 1 on total evaporation
p1logi – 0.6847 parameter in the logistic equation for leaf area index
p1sen – 0.00161 parameter in expression for fraction senescent leaf area
p2evap – 1.2 effect of available water in layer 1 on total evaporation
p2logi (8C days)21 0.0100 parameter in the logistic equation for leaf area index
p2sen – 6.00 parameter in expression for fraction senescent leaf area
p3evap – 20.3 effect of available water in layer 1 on total evaporation
pke cm21 0.125 determines distribution of water evaporation loss with depth
r1hi – 0.6 effect of transpiration ratio on harvest index increase
r1rue – 1.0 effect of transpiration ratio on biomass increase
r1sf – 0.60 effect of transpiration ratio on leaf area index increase
r1tran – 0.4 effect of available water on transpiration
r2hi – 0.8 effect of transpiration ratio on harvest index increase
r2rue – 1.0 effect of transpiration ratio on biomass increase
r2sf – 0.80 effect of transpiration ratio on leaf area index increase
r2tran – 0.6 effect of available water on transpiration
ratedep cm/(8C days) 0.163 rate of root depth increase
ratehi (day)21 0.015 maximum daily rate of increase of harvest index
rue1 g/MJ 2.8 radiation use efficiency before rapid leaf senescence
rue2 g/MJ 1.5 radiation use efficiency after start of rapid leaf senescence
xtinc – 0.70 extinction coefficient for absorption of radiation

of parameter adjustment. Only experiments where N was sup- ations that led us to choose these criteria will also apply in
other cases.posed to be nonlimiting were included. The data span the

period from 1986 to 1997. Sixteen different sites are repre- For our example we use the following goodness-of-fit cri-
terion:sented, with soil types representative of soils in southwestern

France. Maximum available water in the profile at these sites Ccomb 5 wy(1/N)oi(yi 2 yc
i )2

ranged from 40 to 588 mm. Overall, the data come from 32
different site-years, and represented a total of 181 situations 1 wb(1/Nb)oi[(1/nbi)oj(bij 2 bc

ij)2]
(that is, combinations of site, year, and irrigation treatment).

1 wl(1/Nl)oi[(1/nli)oj(lij 2 lc
ij)2] [1]For all situations, the data set includes the input variables

necessary for running the model (Table 2). Grain yield mea- In the first term, yi is measured grain yield for situation i, yc
i

is the corresponding grain yield calculated with the model, Nsurements are available for all, and final biomass measure-
is the total number of situations, and wy is the weighting factorments for almost all situations. In addition, there are multiple
for grain yield errors. The sum is over all situations. In theLAI measurements for 64 situations and multiple biomass
second term bij is measured biomass at the jth biomass mea-measurements for 44 situations.
surement date for situation i, bc

ij is the corresponding valueBased on the individual values for the replications in these
calculated with the model, nbi is the total number of biomassexperiments we can calculate average variances associated
measurement dates for situation i, and wb is the weighting factorwith each output variable. This gives s2

y 5 0.10 (t/ha)2, s2
b 5

for biomass error. The sum over i is only over those situations0.30 (t/ha)2, and s2
l 5 0.038 for grain yield, biomass, and

for which there is at least one biomass measurement. The num-LAI, respectively.
ber of such situations is Nb. The third term is analogous to
the second, but for errors in LAI. The weightings we use areParameter Estimation Method wy 5 s22

y , wb 5 s22
b , and wl 5 s22

l . Adjusting parameters means
finding the values of those parameters that minimize Ccomb.The proposed parameter adjustment algorithm has two

A first choice involved here is which model outputs are tosteps. In the first step, an ordered list of parameters is created.
be adjusted. We chose to adjust to all the data types availableThe parameters are ordered according to how much they
in the data set, that is grain yield, aboveground biomass, andimprove the fit of the model to the measured data, as explained
LAI. The second possibility was to adjust to the particularbelow. In the second step, we determine how many parameters
data type that is of major interest. Since we intend to use thewill be adjusted, based on model predictive quality.
corn model to test different irrigation strategies, it is particu-To implement the algorithm, one must decide on a measure
larly important that the model give good predictions of howof goodness of fit for Step 1, and on what aspect of predictive
grain yield varies with a change in irrigation strategy, everythingquality will be estimated for Step 2. This choice of criteria is
else being held constant. Specifically, this implies that we aredone in a preliminary step (Step 0). In this step we also define
interested in the prediction of yield loss, defined as the yieldother criteria that are of interest for judging the quality of the
difference between an irrigation strategy and a reference strat-models with different sets of parameter values.
egy for the same site-year. We chose the first possibility because
we felt that a model that does poorly for any data type has aStep 0. Criteria of Fit and of Predictive Quality
basic problem, and probably will not give good predictions

The choice of criteria is important, and should be adapted of grain yield loss. At the end of the parameter adjustment
to the goal of the modeling exercise. The criteria presented procedure we evaluated the prediction error for grain yield
below are adapted to our example. They are not meant to be loss, and we also tested other criteria as explained below, to

see if better grain yield loss predictions could be obtained.universally applicable, but many of the underlying consider-
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A second choice concerns the relative weightings of the model. Specifically, we will evaluate the following criteria with
the final model:different available data. When a site-year has multiple biomass

or LAI measurements, the site-year contribution to the crite-
MSEPyloss 5 (1/N)oi[(yrefi 2 yi) 2 (yref c

i(u2i)rion is the average (rather than the total) squared error for
that site-year. This is done to avoid having a site-year with

2 yc
i (u2i))]2 [3]very numerous measurement dates dominate the criterion. In

the above criterion the grain yield, aboveground biomass and MSEPy 5 (1/N)oi(yi 2 yc
i (u2i))2 [4]

LAI terms are each weighted by the inverse of the associated
MSEPb 5 (1/N)oi(1/nbi)oj(bij 2 bc

ij(u2i))2 [5]measurement variance, which is what one would use for inde-
pendent data with different variances in generalized least- MSEPl 5 (1/N)oi(1/nli)ok(lik 2 lc

ik)2 [6]
squares. As mentioned above, we tested these choices, at least
partially, at the end of the procedure. The first criterion measures how well grain yield loss related

The criterion for model predictive quality has the same to irrigation is predicted. Here yrefi is measured grain yield
structure as the goodness-of-fit criterion, but the calculated for the reference treatment for situation i, and yrefc

i(u2i ) is
values are based on cross-validation estimates of the parame- the corresponding calculated value. As reference treatment
ters. The criterion then is: for situation i, we choose the treatment in the same site-year

that received the maximum amount of irrigation water. The
MSEPcomb 5 wy(1/N)oi[yi 2 yc

i (u2i)]2
other criteria correspond respectively to mean squared errors
of prediction for grain yield, biomass, and LAI.1 wb(1/Nb)oi(1/nbi)oj[(bij 2 bc

ij(u2i)2]

1 wl(1/Nl)oi(1/nli)ok[lik 2 lc
ik(u2i)]2 [2]

Step 1. Which Parameters?
The notation yc

i (u2i ) indicates the grain yield for situation i
The parameters are ordered according to how much Ccombcalculated using cross validation, that is where the model pa-

is reduced when that parameter is adjusted. The procedurerameters are adjusted to the data independent of situation i.
is analogous to forward regression. First each parameter isThe meaning of bc

ij(u2i ) and lc
ik(u2i ) is analogous. The first sum

adjusted to the data individually to minimize the criterionis over all situations, the second and third sums are again only
Ccomb, while the other parameters all keep their initial values.over those situations for which there is at least one biomass
The parameter that leads to the smallest value of Ccomb is themeasurement, or one LAI measurement, respectively.
first parameter in the list. Next, all combinations of the bestCross validation is a common approach to estimating pre-
single parameter with another parameter are adjusted to Ccomb.diction error. The data are split into two parts; one part has
The best second parameter is added to the list, and so on.only a single situation (the target situation), the other part has
The result of this step of the adjustment procedure can beall the data independent of the target situation. In our case,
summarised in a table like Table 4, which shows the best one,the second part of the data only includes situations that are
two, three, and four parameters to adjust, as well as theirneither from the same site nor from the same year as the
adjusted values. We will see below that it is not necessary intarget situation. The model parameters are adjusted using the
our example to go beyond four adjusted parameters.second part of the data, and the resulting model is used to

The forward regression type approach is important for re-predict the results for the target situation. In this way, the
ducing the computational burden. In our example there arepredictions are for a situation that was not used for parameter
just 23 four-parameter models to examine with this approach,estimation. The procedure is repeated using every situation
out of the total of 15 600 possible four-parameter models.in turn as the target situation. Averaging the errors over all

Minimization of the criterion was done using NAG routinethe target situations gives the overall estimate of prediction
EO4JAF, a quasi-Newton algorithm (Numerical Analysiserror. Note that the data used for parameter estimation are
Group, 1995).the same for all target situations in the same site-year.

To limit the amount of computation, the choice of which
parameters to adjust is done just once, based on all the data, Step 2. How Many Parameters?
and is not repeated. It is only the calculation of the adjusted

We now estimate the prediction error MSEPcomb for the bestvalues for the chosen parameters that is repeated for each
models with one, two, etc. adjusted parameters. Thus, in thetarget situation.
example we carry out four estimations of prediction error,In addition to the criterion MSEPcomb, it is also convenient
corresponding to the four columns in Table 4. The model thatto define other prediction criteria, which are not an integral

part of the algorithm but that will help to judge the final is finally chosen is that with the smallest prediction error.

Table 4. Best 1, 2, 3, or 4 parameters to adjust to minimize Ccomb, the criterion that combines yield, biomass, and leaf area index errors.
For comparison, the case of no adjusted parameters is included. The best final model (smallest value of MSEPcomb ) is that with three
adjusted parameters. For each set of adjusted parameters, the root mean squared prediction errors for grain yield loss related to
irrigation (√MSEPyloss ), for yield (√MSEPy ), for biomass (√MSEPb ), and for leaf area index (√MSEPl ) are shown.

No. of parameters 0 1 2 3 4

Adjusted parameters – p2logi p2logi, r2hi p2logi, r2hi, himax p2logi, r2hi, himax, p2evap
Adjusted values – 0.0085 0.0085, 0.0048 0.0087, 0.0030, 0.5044 0.0086, 0.0355, 0.4992, 0.5193
√Ccomb 10.72 9.15 8.01 7.68 7.49
√MSEPcomb 10.72 9.55 8.39 8.20 8.34
√MSEPyloss (t/ha) 2.33 2.11 1.40 1.38 1.50
√MSEPy (t/ha) 2.48 2.17 1.68 1.50 1.57
√MSEPb (t/ha) 2.31 2.35 2.36 2.30 2.38
√MSEPl 1.17 1.0 0.95 1.01 0.99
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Evaluation of Criteria loss, MSEPloss. The other columns correspond to fitting
the model and minimizing prediction error for grain yield,The criteria pair Ccomb and MSEPcomb that we propose in
biomass, and LAI. Depending on the criteria, modelsStep 0 combine the different data types for which we have
with different sets of parameter values are obtained.measurements. It is of interest to compare the results with
This emphasizes the fact that the procedure does notresults based on other criteria pairs. In our example, we use

for comparison the pairs (Cyloss, MSEPyloss ), (Cy, MSEPy ), (Cb, calculate true parameter values, but simply the parame-
MSEPb ), and finally (Cl, MSEPl ), where: ter values that minimize the chosen criteria. The grain

yield loss criteria lead to √MSEPyloss 5 1.38 t/ha, the grainCyloss 5 (1/N)oi[(yrefi 2 yi) 2 (yref c
i 2 yc

i )]2 [7]
yield criteria to √MSEPy 5 1.49 t/ha, the biomass criteria

Cy 5 (1/N)oi(yi 2 yc
i )2 [8] to √MSEPb 5 2.23 t/ha, and the LAI criteria to √MSEPl 5

0.90. The best model based on (Ccomb, MSEPcomb ) hasCb 5 (1/Nb)oi[(1/nbi)oj(bij 2 bc
ij)2] [9]

corresponding √MSEP values that are very close to
Cl 5 (1/Nl)oi[(1/nli)oj(lij 2 lc

ij)2] [10] these values (Table 4, last four rows, column for three
The MSEP criteria are those of Eq. [3] to [6]. adjusted parameters). That is, the combined criteria lead

Applying the algorithm with the pair Cyloss and MSEPyloss to predictions nearly as good as those obtained using
means that the model is specifically adjusted to the grain yield criteria that are specifically tailored to each type of data.
loss data, and the number of parameters is chosen to minimize We thus conclude that the weightings in the combined
prediction error for yield loss. The other pairs of criteria corre- criterion are acceptable.
spond to fitting the model specifically to the grain yield, bio- Table 5 shows that using criteria based on a singlemass, and LAI data, respectively, and minimizing prediction

data type can give poor results for other data types.error for each of those types of data.
For example, the best model based on grain yield lossThe value of MSEPyloss for the best model based on the
criteria has an estimated √MSEP for yield of 2.1 t/ha,criteria Cyloss and MSEPyloss shows how well one can do in

predicting yield loss when the adjustment algorithm is specifi- which is substantially larger than the value of 1.5 t/ha
cally based on the grain yield loss data. This is to be compared obtained with the combined criterion. Thus, the use
to the value of MSEPyloss for the best model based on Ccomb of combined criteria is important if one seeks good
and MSEPcomb. If the MSEP values are comparable, the conclu- predictions for several data types.
sion is that the combined criteria pair is acceptable for yield The pairs of initial and final values for the adjusted
loss. Similarly, MSEPy, MSEPb, and MSEPl for the best model parameters of the best model (Table 4) are (0.01, 0.0093)based on Ccomb and MSEPcomb are compared to the correspond-

for p2logi, (0.8, 0.00361) for r2hi, and (0.55, 0.48) foring values for the best models based on Cy and MSEPy, Cb himax. The parameter p2logi is related to the exponen-and MSEPb, and Cl and MSEPl.
tial rate of increase in LAI. The adjusted value is quite
close to the initial value. The parameter himax is the

RESULTS AND DISCUSSION maximum harvest index. The adjusted value of 0.48 is
smaller than the initial value, and is in fact smaller thanTable 4 summarizes the results for the criteria pair
the measured harvest index values for certain situationsCcomb and MSEPcomb. The prediction criterion MSEPcomb
in the data set. According to the model, only water stresshas a minimum for three adjusted parameters. It is thus
can alter harvest index. There are certainly other effects,the model with three adjusted parameters that is chosen
which are not taken into account. The result is that foras the best model, and that we will use in future work
prediction, the best value for maximum harvest indexon testing irrigation strategies. To identify the minimum
is in fact the average harvest index of the treatmentsin this case, it is not necessary to adjust more than four
without a water stress effect. This is a choice in theparameters simultaneously.
model. A different choice would be to try to describeTable 5 shows the best models based on the criteria
harvest index in more detail, but that would involverelated to grain yield loss, yield, LAI, and biomass. To
introducing extra equations, each with some accompa-obtain the results in the first column, for example, we
nying uncertainty. In any case, this emphasizes the diffi-first created an ordered list of parameters according to
culty in relating the adjusted parameter values to crophow much they improved the goodness of fit for grain
characteristics that can be measured independently.yield loss, Closs. Then the number of parameters to adjust

was chosen to minimize prediction error for grain yield While the model parameter is identified as “maximum

Table 5. Best models based on criteria related to yield loss, yield, biomass, or leaf area index. In each case the choice of parameters to
adjust was based on the goodness-of-fit criterion C, and the number of parameters to adjust was based on the prediction error MSEP.
For each set of adjusted parameters, the root mean squared prediction errors for yield loss (√MSEPyloss ), for yield (√MSEPy ), for
biomass (√MSEPb ), and for leaf area index (√MSEPl ) are shown.

Criteria Cyloss, MSEPyloss Cy, MSEPy Cb, MSEPb Cl, MSEPl

No. of parameters for best model 1 3 1 3
Adjusted parameters r2hi lai0, r2hi, maxdep lai0 p2logi, ratedep, p2evap
Adjusted values 0.0179 0.0006, 0.0049, 81.4 0.0010 0.0086, 0.0740, 0.0875
√MSEPyloss (t/ha) 1.38 1.44 2.22 2.02
√MSEPy (t/ha) 2.10 1.49 2.28 2.11
√MSEPb (t/ha) 2.31 3.06 2.23 2.20
√MSEPl 1.17 1.0 1.07 0.90
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Fig. 2. Calculated vs. observed yield losses, for (A) initial parameter
values and for (B) the best model as given in Table 4. The 1:1 lineFig. 1. Calculated vs. observed yields, for (A) initial parameter values
is shown. For the model with no adjusted parameter values, Cyloss 5and for (B) the best model as given in Table 4. The 1:1 line is
MSEPyloss by definition.shown. For the model with no adjusted parameter values, Cy 5

MSEPy by definition.
yield loss with the adjusted model compared with the

harvest index,” the best value for prediction is in fact unadjusted model.
an average harvest index for the treatments with no
simulated water stress. CONCLUSIONSThe parameter r2hi represents the value of the frac-
tion of available water below which harvest index is We propose a procedure for adjusting the parameters

of a crop simulation model to field data. First the param-affected, during the critical period of grain formation.
The initial value was chosen to reflect the hypothesis eters are ordered according to how much each improves

the fit of the model to the measured data, and then thethat even moderate water stress during this period re-
duces harvest index. The adjusted value of r2hi is in number of parameters to adjust is based on an estimate

of prediction error. The criteria of goodness-of-fit andcontradiction to this hypothesis. The adjusted value of
r2hi 5 0.00361 means that as long as available soil water of prediction quality are chosen in accordance with the

goals of the modeling exercise, and the available data.does not fall to very small levels, there is no effect on
harvest index. The result is that according to the model The adjustment procedure does not require any spe-

cific model structure. Also, it is computationally feasi-with adjusted parameters, all situations in the data set
attain maximum harvest index or nearly so. In fact, there ble, even if the model has a large number of parameters.

In our example, with a total of 26 adjustable parameters,are some situations in the data base that have harvest
index values much smaller than the value of himax. This we had to adjust simultaneously at most four parame-

ters. This number will not be the same for other models,result clearly indicates a problem with the model. One
possibility is that the precise formulation in the model but the use of prediction error as a criterion will proba-

bly lead to adjusting relatively few parameters in otheris inappropriate. The model assumes that it is only in
the period dmax to dcri that harvest index is affected by models as well. It should be noted, however, that it is

still important to have efficient code, as emphasized bywater stress, and that the reduction in harvest index
depends on the average stress factor over this period. Villeneuve et al. (1986). Our example required overall

more then 1 million model runs. To make this possible,In future work, we will examine how model behavior
varies if these assumptions are changed. we wrote the code so that all input files were read only

once, at the beginning of the procedure. For other cropBefore parameter adjustment, the model severely un-
derestimated grain yield, and severely overestimated models, some reworking of the code will probably be

necessary to reduce computing time for the algorithm tograin yield loss, for a fairly large group of situations
(Fig. 1A, 2A). The best adjusted model largely corrects manageable proportions, but increasing computer speed

will reduce the problem.this tendency (Fig. 1B, 2B). The estimated prediction
error is 40% less both for grain yield and for grain The procedure is also very general in the types of
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Thermal Time and Plant Developmentdata that can be accommodated. In our example grain
yield, biomass, and LAI measurements were all used. The increment of thermal time on calendar day d, DTTd,
If other data types had been available, the combined is
criterion could have been modified to include them.

DTTd 5 max[TMINdPrior information about the parameters, not based
on the data set used for adjustment, is used in our proce- 1 min(TMAXd, 30)]/2 2 6, 0] [11]
dure to determine the initial values of the parameters. where the functions max and min evaluate, respectively,
Most of the parameters retain these initial values. The to the maximum and the minimum of their arguments.
adjusted parameters on the other hand get new adjusted Seven stages of plant development are identified: sow-
values, which are independent of the initial values. This ing, emergence, maximum LAI, flowering, end of critical
is thus an all-or-nothing use of the prior information. step for grain abortion, beginning of rapid leaf senescence

and maturity.One can imagine making more use of the prior informa-
The thermal times between stages are noted TT with ation, especially if one had upper and lower limits, or prob-

subscript to indicate the stages. We fix ttsow2eme 5 808C day,ability distributions, for the parameter values. However,
ttmax2flo 5 908C day, ttflo2cri 5 2508C day, and ttcri2sen 5it should be remembered that the relation between a
2458C day. The values of tteme2max and ttsen2mat are varietymodel parameter and a measurable characteristic is not dependent. They are calculated from the values for ttsow2maxalways clear. It is thus not clear how useful prior infor- and ttsow2mat given in the corn variety catalogue (AGPM,

mation can be. 1999) as tteme2max 5 ttsow2max 2 ttsow2eme and ttsen2mat 5
The limitations of parameter adjustment for model im- ttsow2mat 2 ttsow2eme 2 tteme2max 2 ttmax2flo 2 ttflo2sen. The calen-

provement must be reemphasized. Obviously the equa- dar day when each stage is reached is noted d with a stage
subscript, for example dmat.tions used in the model are also essential, and parameter

adjustment can only compensate very partially for errors
in these equations. Also, the adjusted parameter values Leaf Area Index
obviously depend on the data set used for adjustment.

We assume that in the absence of water stress, leaf areaIf these data are not representative of conditions where
per plant on day d, lplantd, is described by a logistic equa-the model will be used, then the adjusted model may tion as a function of thermal time:

not be a good predictor for those conditions. Finally, it
lplantd 5 p1logi/[1 1 (p1logi/lai0is not possible to know with certainty which parameter

values really give the best predictions. The algorithm 2 1)exp(2p2logi 3 TTd21] [12]
presented here only gives an approximation, albeit

The increase in leaf area per plant on day d in the ab-hopefully a rather good approximation, to the best pa-
sence of water stress, Dlplantd, is then calculated as a dif-rameter values for prediction.
ference:There are nonetheless important advantages to using

Dlplantd 5 lplantd11 2 lplantd, TTd # tteme2max [13]an automatic parameter adjustment algorithm. It can
simplify and improve parameter estimation and it can Dlplantd 5 0, TTd . tteme2max [14]
help separate problems and questions related to param-

The increase in leaf area index (LAI) on day d, DLAId,eter estimation from those related to the model equa-
is thentions. In particular, we plan to use this estimation algo-

rithm to study three specific questions related to model DLAId 5 DENS 3 Dlplantd
development: (i) What is the effect of uncertainty in

3 reduc(ATPTd; r1sf, r2sf) [15]the initial parameter values on model predictive quality
where reduc(ATPT; r1sf, r2sf) is a reduction function due(Wallach and Génard, 1998)? (ii) How does model pre-
to water stress (Muchow and Sinclair, 1991). Here thedictive quality depend on the structure of the data set?
reduction depends on ATPTd, the ratio of actual to poten-(iii) What is the effect of increasing the number of pa-
tial transpiration on day d (see below). The reduction func-rameters, due to increasing the complexity of the model,
tion is defined ason model predictive quality?

reduc(x; p1, p2) 5 0, x , p2 2 p1

APPENDIX: MODEL EQUATIONS reduc(x; p1, p2) 5 (p1 2 p2 1 x)/p1,
The model calculations begin on 1 January, at which p2 2 p1 # x # p2

date soil moisture is initialized (see Table 1). It is found
reduc(x; p1, p2) 5 1, x . p2that the simulation results are insensitive to the assumed

soil water at this date, because in any case maximum avail- The fraction of LAI that is senescent on day d, FSENd,
able water is usually attained at some time during the is given by
winter in southwestern France, where the model is to be

FSENd 5 p1sen 3 exp[p2senused. Once this occurs, subsequent results are independent
of the initial soil water. Thermal time calculations begin

3 TTd/tteme2mat] [16]on sowing date, and thermal time is accumulated until
emergence occurs. At that point thermal time is reinitial- This equation is based on Muchow and Carberry (1989),

but modified so that the fraction of senescent leaf area isized to zero, and the crop state variables are initialized as
shown in Table 1. the same for all varieties at maturity. Active LAI is then
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water contentALAId 5 [1 2 FSENd] 3 LAId [17]
of layer i, day d [25]

Root Depth FAWi,d 5 Qi,d/Qxi,d fraction of maximum available
The increase in root depth on day d, DRd, is proportional water, layer i day d [26]

to thermal time increase, but cannot exceed the larger of
maximum root depth or soil depth. Thus

Soil Water Evaporation
DRd 5 min(ratedep 3 DTTd, maxdep Potential evapotranspiration (ETPd ) is divided among

potential evaporation (PEd ) and potential transpiration2 Rd21, SOILD 2 Rd21) [18]
(PTd ) (Ritchie, 1972) as:

Aboveground Dry Matter PEd 5 ETPd 3 exp(2xtinc 3 ALAId21) [27]
Biomass accretion depends on intercepted radiation and PTd 5 ETPd 2 PEd [28]radiation use efficiency (rue). The radiation use efficiency

depends on water stress (Muchow and Sinclair, 1991) and Following Van Keulen (1975), actual soil water evapora-
development stage. The increase in aboveground dry mat- tion is a function of the fraction of maximum available
ter on day d, DBd, is then water in Layer 1:

DBd 5 0.48RADd 3 rue 3 [1 2 exp(2xtinc AEd 5 PEd[p1evap 1 p2evap

3 ALAId)] reduc(ATPTd, r1rue, r2rue) [19] 3 exp(p3evap/FAW1,d)] [29]

with rue 5 rue1 for TTd # tteme2sen and rue 5 rue2 for This soil water evaporation is divided among the two
TTd . tteme2sen. top layers. The relative losses for Layers 1 and 2 are

f1,d 5 FAW1,d[1 2 exp(2pke 3 TH2,d)] [30]Harvest Index
f2,d 5 FAW2,d[exp(2pke 3 TH1,d)Potential harvest index is calculated as a function of

water stress during the period around flowering, from dmax 2 exp(2pke 3 TH2,d)] [31]
to dcri:

The amount of soil water evaporation from Layers 1
and 2, AE1,d and AE2,d respectively, is thenHPOT 5 himax x o

dcri

d5dmax

reduc(ATPTd;r1hi,r2hi)/
AE1,d 5 min[f1,d/(f1,d 1 f2,d) 3 AEd, Q1,d] [32]

(dcri 2 dmax 1 1) [20]
AE2,d 5 min[f2,d/(f1,d 1 f2,d) 3 AEd, Q2,d] [33]

The increase in harvest index each day, DHd, is then

DHd 5 min(ratehi, HPOT 2 Hd21), Transpiration

TTd $ tteme2cri [21] Actual total transpiration on day d, ATd, is given by

DHd 5 0, TTd , tteme2cri [22] ATd 5 min[PTd 3 reduc(FAW23;
Yield is calculated on day dmat as r1tran, r2tran), Q2,d 1 Q3,d] [34]

Y 5 HdmatBdmat [23] where reduc(FAW23; r1tran, r2tran), the reduction factor,
depends on the fraction of maximum available water in
the Layers 2 and 3, FAW23:Soil Processes

In the model, the soil is divided into four layers. Layer FAW23 5 (Q2,d 1 Q3,d)/(Qx2,d 1 Qx3,d) [35]
1 is a thin superficial layer from 0- to 2-cm depth used to

The ratio of actual to potential transpiration is ATPTd:determine total soil water evaporation (Van Keulen, 1975),
Layer 2 goes from 2 to 30 cm (approximate plowing depth), ATPTd 5 ATd/PTd [36]
Layer 3 from 30 cm to root depth Rd, and Layer 4 from

Transpiration demand is distributed between Layers 2Rd to soil depth. As indicated, the positions of Layers 3
and 3 in proportion to the thickness of each. The relativeand 4 vary with time as root depth increases. If Rd , 30
demands from Layers 2 and 3, TD2,d and TD3,d, are re-cm, then Layer 3 does not exist (thickness 0), and if Rd $
spectivelysoil depth, then Layer 4 does not exist.

Let uFCi,d and uWPi,d represent, respectively, volumetric TD2,d 5 TH2,d/(TH2,d 1 TH3,d)ATd [37]water content of Layer i at field capacity and at wilting
point. These values depend on the day d for Layers 3 and TD3,d 5 TH3,d/(TH2,d 1 TH3,d)ATd [38]
4 because the depths included in those layers vary with

The transpiration loss from Layers 2 and 3 is denoted AT2,dtime. The thickness of layer i on day d is noted THi,d. The
and AT3,d. If the available water in both layers is sufficientwater content of layer i on day d as an equivalent depth
to meet demand, thenof water is noted Si,d. Then we have

AT2,d 5 TD2,d [39]Qi,d 5 Si,d 2 uWPi,d THi,d available water
content of layer i, AT3,d 5 TD3,d [40]
day d [24]

If not, then the shortfall from the layer with insufficient
water is made up from the other layer.Qxi,d 5 (uFCi,d 2 uWPi,d)THi,d maximum available
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Muchow, R.C., and P.S. Carberry. 1989. Environmental control ofWater Budget
phenology and leaf growth in a tropically adapted maize. Field

At the end of day d, the water contents of the four soil Crops Res. 20:221–236.
Muchow, R.C., and T.R. Sinclair. 1991. Water deficit effects on maizelayers (i) are updated in turn. We use an intermediate

yield modeled under current and ‘greenhouse’ climates. Agron.variable STEMPi,d, which is equal to the previous day’s
J. 83:1052–1059.water content plus today’s additions, INPUTi,d, minus to-

Muchow, R.C., T.R. Sinclair, and J.M. Bennett. 1990. Temperatureday’s soil water evaporation and transpiration:
and solar radiation effects on potential maize yield across locations.
Agron. J. 82:338–343.STEMPi,d 5 Si,d21 1 INPUTi,d

Numerical Analysis Group. 1995. The NAG fortran library manual.
2 AEi,d 2 ATi,d [41] Mark 17. NAG, Central Office, Oxford, UK.

Olsthoorn, T.N. 1995. Effective parameter optimization for ground-
DRAINAGEi,d 5 max(0, STEMPi,d 2 Qxi,d) [42] water model calibration. Ground Water 33:42–48.

Refsgaard, J.C. 1997. Parameterisation, calibration and validation ofSi,d 5 STEMPi,d 2 DRAINAGEi,d [43] distributed hydrological models. J. Hydrol. 198:69–97.
Ritchie, J.T. 1972. Model for predicting evaporation from a row cropwith

with incomplete cover. Water Resour. Res. 8:1204–1213.
Sievänen, R., and T.E. Burk. 1993. Adjusting a process-based growthINPUT1,d 5 RAINd 1 IRRIGd [44]

model for varying site conditions through parameter estimation.
INPUTi,d5 DRAINAGEi21,d, i . 1 [45] Can. J. For. Res. 23:1837–1851.

Sinclair, T.R., J.M. Bennett, and R.C. Muchow. 1990. Relative sensitiv-The above operations concern the soil layers as defined
ity of grain yield and biomass accumulation to drought in field-at the start of day d. Because the thickness of the soil grown maize. Crop Sci. 30:690–693.

Layers 3 and 4 can evolve with time, it is necessary at the Stone, M., and R.J. Brooks. 1990. Continuum regression: Cross-vali-
end of each day to calculate new values of THi,d, uFCi,d, dated sequentially constructed prediction embracing least-squares,
uWPi,d, and finally Si,d for the new thicknesses. partial least-squares and principal component analysis. J. R. Statist.

Soc. B 52:237–269.
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