
CallForOptim : simulation optimization by

mean of function optimization and reinforcement

learning.

September 19, 2013

Contents

1 Introduction 1

2 Global architecture 2

3 Function optimization methods 3
3.1 Random optimizer . 3
3.2 P2 algorithm . 3
3.3 Covariance Matrix Adaptation Evolution Srategy 3

4 Reinforcement learning agents 4
4.1 SARSA (State-Action-Reward-State-Action) 4
4.2 Xitek . 4

5 Examples 4
5.1 Using P2 for optimizing the Bohachevsky function 4
5.2 Using SARSA for learning a policy on mines environment 5

6 Implementation notes 5

1 Introduction

The package CallForOptim provides optimization methods and generic atomic
models for calling optimization processes. Two types of optimizations are avail-
able in this package : function optimization and reinforcement learning agents.

• Given a function f : Id → R, where Id is the domain of input of f , the
function optimization problem consists in finding xmin ∈ Id such that:
xmin = argminx∈Id(f(x)). In this type of optimization, the simula-
tion model is actually seen as a black-box function (eg. model ExBo-
hachevsky.vpz, section 5.1).

1

• Reinforcement learning [4] consists in learning a policy from observations
and rewards provided by the model (the model is also called environment).
A policy is a function that gives the next action to perform, during simula-
tion, in order to optimize a function that aggregates the observed rewards
over the simulation. This type of optimization requires intimate relations
between the agent that learns the policy and the model. Thus, the archi-
tecture is little different from the architecture for function optimization
(see e.g. model ExMinesEnvironment.vpz, section 5.2).

The use-cases rely on atomic models and interfaces that are described in the
next section. The available function optimization methods in this package are
listed in the section 3 and RL methods are listed in section 4.

2 Global architecture

FOexpe
(templated by a FOmethod)

user model :
f

conditions
initialization :

x

observations :
f(x)

optimization
initialization

optimization
results :

x s.t. f(x) = max f RLexpe

RL
initialization

RL results :
argmax P

user model

current policy :
P

new policy :
P'

RLagent
(templated by a RLmethod) environment

data flow with conditions (vpz)

data flow with observables (views)

data flow with external events

Different simulators (and time clock) are used to simulate models above and below these lines.
Above models drive the optimization and call for below models simulation.

a b

Figure 1: In use-case a, the user performs a simulation optimization by mean of
function optimization. In use-case b, the user performs a simulation optimization
by mean of reinforcement learning.

The first objective of this package is to provide methods for optimization.
For this, atomic models (FOexpe and RLexpe) are provided that model the
behaviour of optimization processes, mainly the succession of calls of the model
to optimize. Configuration of these processes is given directly in the conditions

2

of these models, eg. the user model which is used for the optimization, the
parameters for optimization, etc..

The second objective of this package is to help in developping optimization
methods. Thus, the role of the developper is to implement one of the two
interfaces : FOmethod for a function optimization method or RLmethod for a
reinforcement learning agent.

The FOmethod interface contains, among others, the function :

virtual bool opt imizeStep (unsigned int c u r r e n t s t e p) ;

The RLmethod interface, which is the one proposed by RL-glue [5] contains,
among others, the functions :

virtual const vv : : Value& a g e n t s t a r t (
const vv : : Value& obse rvat i on) ;

virtual const vv : : Value& agent s t ep (double reward ,
const vv : : Value& obse rvat i on) ;

virtual void agent ep i s ode ends (double reward) ;
virtual bool i s l a s t e p i s o d e () const ;

Note that one simulation of the user model represents one episode. Note also
that RL methods require to be embedded in the user model, this is done thanks
to the templace atomic model RLagent.

3 Function optimization methods

3.1 Random optimizer

The random optimizer strategy consists in generating n random vectors into the
input space and to take the best input vector according to the output.

3.2 P2 algorithm

P2 [1] is a family of methods for simulation based continuous optimization for
stochastic problems. They allow to optimise expected value or a quantile value
of simulation1. These algorithms are based on hierarchical decomposition pro-
cedure. They aim at partitionning the decision space into smaller ones, and
continuing the research into the potential optimal ones. The main issues are to
evaluate regions of continuous decision variables, divide one region into smaller
ones, and select one region among all as the one that the algorithm will inves-
tigate further.

3.3 Covariance Matrix Adaptation Evolution Srategy

CMA-ES algorithms [3] are methods for continuous optimization problems.
They rely on a variance-covariance matrix over the real inputs which is used

1Multi objective optimization is not available yet.

3

to mutate candidates. This matrix globally determines the best “direction” for
candidate generation into the search domain. (1+1) CMA-ES is an hill climb-
ing method since only one new candidate is generated from the best promising
candidate generated so far.

Note that this optimizer requires the use of the Shark library.

4 Reinforcement learning agents

4.1 SARSA (State-Action-Reward-State-Action)

SARSA maintains a q-matrix, ie a structure that gives the expected reward
value by performing an action a in a state s. The q-matrix is updated with
the following rule : Q(s1, a1)← Q(s1, a1) + α[r + γQ(s2, a2)−Q(s1, a1)]. This
update is done each time the environement is in state s1, when the agent has
performed action a1 and that this action has lead the environment to be in
state s2 . Thus, the expected reward for pair (s1, a1) depends on the immediate
reward r, the current expected reward Q(s1, a1) and the expected reward of
performing action a2 from state s2. In order to explore the state-action space,
an ε-greedy policy is implemented. This exploring policy is used to select the
next action to perform a2. α and γ are paremeters of the method SARSA.

This reinforcement learning agent implementation is the one proposed in the
book of Sutton and Barto [4].

4.2 Xitek

Xitek [2] is an implementation of the reinforcement learning method R-learning
[4] adapted to simulation optimization. With Xitek, the problem of policy
learning can moreover be broken down. Indeed, the policy can be split into
multiple state-action spaces, each one is called “stage” and represent a particular
problem.

5 Examples

Examples can be run by launching the simulation of the model Experiments.vpz
provided into the package. For each example, appropriate conditions and dy-
namic have to be attached to the atomic model Experiments.

5.1 Using P2 for optimizing the Bohachevsky function

The bohachevsky function is defined by [−100; 100]2 → R+, the minimal value
of this function is 0 and it is taken for xmin = (0, 0).

The model ExBohachevsky.vpz is a simulation atomic model, with no dy-
namic behaviour, that computes the value of the function for a given x =
(x1, x2). x values are given in the condition list of the model, and the func-
tion value is observed on port y.

4

Figure 2: Bohachevsky function value in R2.

5.2 Using SARSA for learning a policy on mines environ-
ment

This example is proposed by the developpers of the library RL-Glue [5]. The
goal is to learn a policy for moving an agent into a 2D grid where cell can contain
mines.

The simulation of the model ExMinesEnvironment.vpz stops if either the
agent arrives into a goal state (the agent obtains a reward of +1000) or if the
agent arrives into a state whith a mine (the agent obtains a reward of -100), see
figure 3.

A policy defines the direction to take (East, West, North or South) for each
cell in order to maximise the reward.

S

E

N

W

Figure 3: Mines Environment 2D grid. Red cells represent mines and the green
cell represent the goal to reach.

6 Implementation notes

When implementing an optimization method (see section 2), sharing common
tools is an efficient practice. This section is intended to describe tools that are

5

already available.

• VleSimulator is a wrapper to a simulator of vle models (available for op-
timization methods). Simulation of one point and simulation of a set of
points can be performed. Input names of the model have to be ports of
the condition “CallForOptim”. Output names have to be port of the view
“CallForOptim”.

using namespace v l e : : va lue ;
Map i n i t ;
Map& mod = i n i t . addMap(”model”) ;
mod . addStr ing (” package ” , ”CallForOptim”) ;
mod . addStr ing (”vpz” , ”ExBohachevsky . vpz”) ;
Set& inputs = mod . addSet (” inputs ”) ;
inputs . addStr ing (”x1”) ;
inputs . addStr ing (”x2”) ;
Set& outputs = mod . addSet (” outputs ”) ;
outputs . addStr ing (”y”) ;
c f o : : t o o l s : : VleSimulator sim (i n i t) ;
Set po int ;
po int . addDouble (3) ;
po int . addDouble (−10);
double out = sim . s imulate (po int) . toDouble () . va lue () ;
cout << out << ‘ ‘ equa l s ‘ ‘ << 209 .6 << endl ;

• Accumulators are tools for incremental computation of statistics (mean,
standard deviation, quantiles, etc..). See e.g. Boost accumulators library.
For example :

using namespace c f o : : t o o l s ;
Accu<MonoDim, MEAN VAR> acc ;
acc . i n s e r t (1) ; acc . i n s e r t (5) ;
acc . i n s e r t (4) ; acc . i n s e r t (3 . 6) ;
cout << acc . mean () << ‘ ‘ equa l s ‘ ‘ << 3 .4 << endl ;
cout << acc . moment2 () << ‘ ‘ equa l s ‘ ‘ << 13 .74 << endl ;

References

[1] O. Crespo. Conception par simulation pour la conduite de culture. PhD
thesis, Université de Toulouse III, 2008.

[2] F. Garcia. Use of reinforcement learning and simulation to optimize wheat
crop technical management. In Proceedings of International Congress on
Modelling and Simulation (MODSIM’99), pages 801–806, 1999.

[3] Christian Igel, Tobias Glasmachers, and Verena Heidrich-Meisner. Shark.
Journal of Machine Learning Research, 9:993–996, 2008.

6

[4] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1998.

[5] Brian Tanner and Adam White. RL-Glue : Language-independent soft-
ware for reinforcement-learning experiments. Journal of Machine Learning
Research, 10:2133–2136, September 2009.

7

	Introduction
	Global architecture
	Function optimization methods
	Random optimizer
	P2 algorithm
	Covariance Matrix Adaptation Evolution Srategy

	Reinforcement learning agents
	SARSA (State-Action-Reward-State-Action)
	Xitek

	Examples
	Using P2 for optimizing the Bohachevsky function
	Using SARSA for learning a policy on mines environment

	Implementation notes

